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Abstract: Parallel algorithm may be executed as a
piece at a time on many processing devices, and then
return results at the end. A sparse matrix is huge and
consists many zero elements. Its execution process is
extremely time-consuming. This paper describes, how
to do Sparse Matrix-Vector multiplication using
parallel algorithm with block striped partitioning.
Speed-up of Sparse Matrix-Vector multiplication
measured with increasing number of processors.
Experiment results shows that this method increase the
speed-up of Sparse Matrix-Vector multiplication.
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Introduction

Traditionally, computer software has been written
for serial computation. To solve a problem, an
algorithm is constructed and implemented as a serial
stream of instructions. These instructions are executed
on a central processing unit in one computer. Only one
instruction may be executed at a time-after that
instruction is finished, the next is executed. On the
other hand, parallel computing uses multiple
processing elements simultaneously to solve a problem
(Grama et al., 2003) This is accomplished by breaking
the problem into independent parts so that each
processing element can execute its part of algorithm
simultaneously with others (Parhami, 2002). The
processing elements can be diverse and includes
resources such as a single computer with multiple
several of networked

processors, computers,

specialized hardware, or any combination of the above.

(8]

Information of many pieces of human activity is
frequently represented in the form of matrices. Matrix
computing has played an important part in numeric
computing. The matrix is sparse when many of the
elements are equal to zero. Huge sparse matrices often
appear in science or engineering when solving partial
differential equations. Sparse Matrix computing
includes so many different operations; most popular
sparse matrix techniques are Matrix-Vector
multiplication, Matrix-Matrix multiplication and
solving System of Linear Equations. Sparse Matrix-
Vector multiplication is an important operation
because it involved in many scientific computations.
Some examples are solution to Linear System with
iterative methods, network traffic applications and
linear programming. Sparse matrix solution is
extremely time consuming for large problems.So
itsparallelization is desirable to improve its execution
time. A parallel formulation for sparse matrix
factorization can be easily obtained by simply

distributing rows to different processors.

In this work, parallel sparse Matrix-Vector
multiplication algorithm with block strip partitioning
based upon the standard Message Passing Interface
(MPI).

Methodology

In this piece of work sparse Matrix-Vector
multiplication using block striped partitioning was
implemented. The main goal with the parallelization is
to perform Matrix-Vector multiplication faster than
what is possible on a single processor.




A sparse matrix is one whose entries are mostly
zero. There are many ways of storing a sparse matrix.
Whichever method is chosen, some form of compact
data structure is required that avoids storing the
numerically zero entries in the matrix. It needs to be
simple and flexible so that it can be used in a wide
range of matrix operations. In this experiment
Compressed Row Storage (CRS) scheme was used.

The CRS is a widely used scheme for storing sparse matrices.
In the CRSformat, a sparse matrix with rows
having non-zero entries is stored using three arrays: two

integer arrays ro'and ct, and one array of real
entries v. The array rcis of size , and the
other two arrays are each of size . The array cc stores

the column indices of the non-zero entries in , and the
array values stores the corresponding non-zero entries. In
particular, the array cc stores the column indices of the
first row followed by the column indices of the second row
followed by the column indices of the third row, and so on.
The array rotis used to determine where the storage of
the different rows starts and ends in the

array ctand values. In particular, the column-indices of
row are stored starting at col_ind [row_pand ending at
(but not including) col_ind [row_ptr[i- Similarly, the
values of the non-zero entries of row are stored at values

[row p and ending at (but not including) values

[row_ptr[i- And also note that the number of non-zero

entries of row is simply ~ row_pir[i+1] —rowy
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Figure 1: Representation of Sparse Matrix in
Compresses Row Storage (CRS) format

We consider the problem of computing the sparse matrix-
vector product [yl = | where is a sparse matrix of
size nand is a dense vector usingblock striped
partitioning. In the block striped partitioning of a matrix, the
matrix is divided into groups of complete rows or columns,
and each process is assigned one such group.
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Figure 2 :The data required by each processor to
compute sparse matrix-vector product

The algorithm partitions the rows of matrix using block-
striped partitioningand the corresponding entries of
vector among the processes, so that each of the processes

gets  rows of the matrix and  elements of the vector.

The portion of the matrix obtained by block-striped
partitioning, is assigned to each process and the non-zero
entries of the sparse matrix is stored using the CSR format
in the arrays ro, ccand v. To obtain the entire
vector on all  processes, MPI_Allgather  collective
communication is performed.

Each process is responsible for computing the
elements of the vector that correspond to the rows of
the matrix that it stores locally. This can be performed
as soon as each process receives the elements of the
vector that required to compute these serial sparse
dot-products.

The set of elements depends on the position of
the non-zeros in the rows of assigned to each process.
In particular, for each process , let be the set of
column-indices that contain non-zero entries overall
the rows assigned to this process. Then process needs
to receive all the entries of the form for all in.

The parallel sparse Matrix-Vector multiplication
has been implemented using C language in fedora core
6.0 (Linux platform) and using MPICH2 with eight
connected computer. In this setup, a computational test
using increasing number of processors was
experimented. While implementing, it is considered
one processor for a sequential sparse Matrix-Vector
multiplication. And, execution and speedup time
werecalculated for increasing number of processors.
Where, execution was calculated using MPI routine

MPI_Wtime() and speedup is defined as the ratio of

[9]
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the time taken to solve a problem on a single
processing element to the time required to solving the
same problem on a parallel computer with identical
processing elements.

Results and Discussion

The results were obtained from 16x16 matrix and
16x1 vector implementation. It is observed, execution
time decreased with increasing number of processors
and after 4th processor the execution time was not
changed [Figure 3]. It shows that there is an optimum
number of processor for a particular problem.
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Figure 3 : Observed execution time of
Sparse Matrix-vector multiplication
with increasing number of processors

Speedup was increased as increasing number of
processors and after 4th processor the execution time
was not changed [Figure 4] because calculation of the
speed up depends on execution time. We can observe
that the speedup was suddenly increased as increasing
number of processors.
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Figure 4: Observed speedup of Sparse Matrix-
Vector multiplication with increasing number of
processors

[10]

Conclusion

In this piece of work we have described a Sparse
Matrix-Vector multiplication using parallel algorithms
with block striped partitioning was experimented. In
this instance to avoid zero multiplication we used the
compressed row storage matrix format was used.

By implementing it is possible to conclude that
the parallel algorithms reduce the execution time as
opposed to the sequential algorithms for computation
of Sparse Matrix-Vector multiplication. The results
emphasize that the parallel algorithm is an effective
when sparse matrix computation.

Increasing number of processors continuously
leads to communication overhead. Study on
communication overhead in parallel sparse matrix

computation may be the window for future work.
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